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Reminders

• Please interrupt me! I would rather describe a few things well than

many things poorly.

• I will post these slides at esselltwo.com/talks
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Plan of the talk

1. Overview/reminder of Reshetikhin-Turaev construction for links

2. RT for unrestricted quantum groups at roots of unity (abelian version)

3. RT for unrestricted quantum groups at roots of unity (nonabelian

version) and geometric applications

3



Quantum groups and quantum

invariants

Quantum groups and quantum invariants

Quantum groups at a root of unity

Geometric applications
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Quantum sl2

Definition

Quantum sl2 is the algebra Uq = Uq(sl2) over C[q, q−1] with generators

K±1,E ,F and relations

KE = q2EK KF = q−2FK EF − FE = (q − q−1)(K − K−1)

Idea

This is a non-commutative, non-cocommutative version of the universal

enveloping algebra of sl2, with K = qH . When q → 1 we recover sl2.
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An unusual normalization

Warning

Usually we set

EF − FE =
K − K−1

q − q−1

instead. These equivalent algebras whenever q − q−1 6= 0.

• The usual normalization gives a non-commutative, cocommutative

universal enveloping algebra at q = 1

• Ours is so that U1(sl2) is a commutative and non-cocommutative

Hopf algebra, i.e. the algebra of functions on an algebraic group. Will

be important later!

• This is the Kac-de Concini form of the quantum group
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Representations of Uq

Fact

For q generic (not a root of unity)

any finite-dimensional weight

module of dimension N looks like

• qλ = qN−1

• qN−3

...
...

• q−(N−1)

F

F

F E

E

E

• Very similar to sl2. Tensor

product multiplicities are the

same as well.

• What was the point of

introducing Uq?

• Because Uq is not

cocommutative,

τ(x ⊗ y) = y ⊗ x is not a

Uq-module map

V ⊗W →W ⊗ V

• Instead there are more

interesting ones!
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The universal R-matrix

Definition

The universal R-matrix is

R = qH⊗H/2
∞∑
n=0

cnE n ⊗ F n ∈ Uq ⊗ Uq

for some coefficients cn.

This is an infinite series! Really lives in a certain completion of U⊗2q .

(Another way is to work in power series in ~, with q = e~.)

To fix

On any finite-dimensional Uq-module E and F act nilpotently and H is

diagonalizable so the action of R is well-defined.
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The braiding

Proposition

For any Uq-modules V ,W , the braiding is

cV ,W :

{
V ⊗W →W ⊗ V (x ⊗ y)

x ⊗ y 7→ τ(R · (x ⊗ y))

It is a map of Uq-modules.

We can draw cV ,W as a diagram:

V

W

W

V

which looks like a braid generator.
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The braiding is a braiding

This diagram for c−,− is justified by the braid relation/RIII move:

=

Equivalent to the Yang-Baxter relation for R.

Also, the braidings are always invertible, which gives us the RII move.
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The RT functor for braids

Theorem (The Reshetikhin-Turaev functor)

There is a functor

F : CBraidUq → Uq-Mod

where CBraidUq is the category of braids with components labeled

(colored) by objects of Uq-Mod.

Idea.

Strands labeled by V go to V , braidings go to the braiding. Because

c−,− satisfy braid relations this is well-defined.
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The RT functor for tangles

More generally we can define F on oriented tangles, which in addition to

braided parts can look like

or

For example, the image of

V

W

under F is a map V ∗ ⊗W ⊗ V →W .
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Evaluation, coevaluation, and trace

Let V be a vector space with basis {vi} and dual basis {v i} of V ∗. We can

compute the trace of a linear map f : V → V with matrix elements f j
i by

1
coevV7−−−→

∑
i

vi ⊗ v i f⊗idV∗7−−−−→
∑
ij

f j
i vj ⊗ v i evV7−−→

∑
ij

f j
i v i (vj)

=
∑
i

f i
i = tr f .

Diagrammatically:

f
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Quantum trace

Orientations matter! Really there are two evaluations/coevaluations:

coev↓V : k→ V ∗ ⊗ V

coev↓V (1) =
∑
i

v i ⊗ vi

coev↑V : k→ V ⊗ V ∗

coev↑V (1) =
∑
i

v i ⊗$ · vi

ev↓V : V ⊗ V ∗ → k

ev↓V (v ⊗ f ) = f ($−1 · v)

ev↑V : V ∗ ⊗ V → k

ev↑V (v ⊗ f ) = f ($−1 · v)

$ is the pivotal element, in our examples a power of K .
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Quantum dimension

Definition

The quantum dimension of a Uq-module V is

dimq(V ) = trq(idV ) = ev↓V (idV ⊗ idV ∗) coev↑V

Example

For the N-dimensional irrep VN−1 of Uq,

dimq(VN−1) = [N]q =
qN − q−N

q − q−1
= qN−1 + qN−3 + · · ·+ q−(N−1)

is a q-analog of N.
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Quantum dimensions and semisimplicity

Recall a category is semisimple if objects are completely reducible (break

apart into direct sums of simples).

General principle

Uq-Mod is semisimple exactly when all the quantum dimensions of

simple objects are nonzero.

To be precise, need to specify exactly what kind of category we are talking

about. There are audience members who know more than me!
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Link invariants from RT

Pick an object V of Uq-Mod.

• A link L (with all components labeled by V ) is a colored tangle

diagram with no ends

• Its image under F is a linear map FV (L) : C(q)→ C(q), which is a

scalar.

• This scalar is an invariant of L.1

• Concretely, can compute

FV (L) = trq FV (β)

where β is a braid whose closure is L.

1Technically depends on framing of L. Can get rid of this by normalizing braidings.
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Examples of quantum link invariants

Jones polynomial

If V = V2 is the 2-dimensional irrep of Uq, get the Jones polynomial

V2,L, a Laurent polynomial in q2.

Colored Jones polynomial

If V = VN is the N-dimensional irrep of Uq, get the colored Jones

polynomial VN,L, a Laurent polynomial in q2.

HOMFLY-PT polynomial

If V is the N-dimensional irrep of Uq(slN), get the HOMFLY-PT

polynomial, a Laurent polynomial in q2 and z = qN − q−N .
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More specific examples

The figure eight knot 41

has V2,41 = q4 − q2 + 1− q−2 + q−4.

(Here we have normalized so V2,unknot = 1.)
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More specific examples

Colored Jones at a root of unity

Set ξ = exp(πi/N) and {k} = ξk − ξ−k . Then

VN,41(q = ξ) =
N−1∑
j=0

j∏
k=1

{N − k}{N + k}.

• Computing these closed formulas for all N is hard!

• One reason: if K is presented as the closure of a braid on b strands,

then computing VN,K involves the trace of a Nb × Nb matrix.

• This one comes from writing 41 as surgery on the Borromean rings.
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Geometric connections

Theorem

2π lim
N→∞

log |VN,41(q = ξ)|
N

= 2.02988 . . . = Vol(41)

where Vol(K ) is the volume of the complete hyperbolic structure of

S3 \ K .

Reminders:

• A hyperbolic knot has a complete finite-volume hyperbolic structure

(metric of curvature −1) on its complement. This metric is a

topological invariant.

• All knots are satellites, torus knots, or hyperbolic.
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The volume conjecture

Conjecture ([Kas97; MM01])

For any hyperbolic knot K ,

2π lim
N→∞

log |VN,K (q = ξ)|
N

= Vol(K ).

• There are versions for complex volume, for knots in 3-manifolds, for

3-manifolds. . .

• In every case where the left-hand limit is known to exist the

conjecture holds.
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How does VN know about hyperbolic

geometry?

22



Still not clear, but suggests we should study Uξ-Mod for q = ξ more

carefully.
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Quantum groups at a root of

unity

Quantum groups and quantum invariants

Quantum groups at a root of unity

Geometric applications
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More complicated representation theory

Unlike for generic q, Uξ-Mod for q = ξ = exp(πi/N) is much more

complicated:

• It is no longer semisimple

• There are uncountably many simple objects
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What happens to the VN?

Notice

dimq Vn−1 = [n]ξ =
ξn − ξ−n

ξ − ξ−1

is zero for n = N, so dimq VN = 0. We separate out:

V1,V2, . . . ,VN−2,︸ ︷︷ ︸
dimq 6=0

non-semisimple︷ ︸︸ ︷
VN−1,VN , . . .
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Semisimplification

Traditional option here is to kill the non-semisimple part.

• Can specialize to “nice” modules by taking small quantum group

KN = ±1,EN = FN = 0, then send every negligible morphism (f

with trq f = 0) to zero.

• For Lusztig form of quantum group, instead want to start with

category of tilting modules.

• Can also get the same category by using Temperly-Lieb diagrams at

q = ξ and quotienting by the Jones-Wenzl projectors for n ≥ N.

• Result is a semisimple category, in fact a fusion category.

• These fusion categories are the input to the Rehsetikhin-Turaev and

Turaev-Viro TQFTs.
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A different approach

• For the volume conjecture we want to understand VN−1, which is

sent to 0 under semisimplification.

• In addition, there are a whole SL2(C)-worth of modules like VN−1,

also sent to 0.

• Can think of these modules as orthogonal to the semisimple part.

• By using these we can get new, interesting quantum invariants.
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The big center

For q not a root of unity, center of Uq is generated by the Casimir

Ω = FE + qK + q−1K−1.

• At q = ξ, there is now a large central subalgebra

Z0 = C[K±N ,EN ,FN ].

• Full center is Z = Z0[Ω]/polynomial relation

• For simple module V , action of Uξ factors through some Z-character

χ : Z → C.

• For now, let’s focus on Z0-characters χ : Z0 → C.
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The algebraic group Z0

• Z0 is a commutative Hopf algebra, so its spectrum is an algebraic

group

• Specifically, it’s the group SL2(C)∗ of matrices of the form

χ = (χ+, χ−) =

([
χ(KN) 0

χ(KNFN) 1

]
,

[
1 χ(EN)

0 χ(KN)

])

• We call SL2(C)∗ the Poisson dual group of SL2(C)

• Because any simple Uξ-module has a Z0-character, Uξ-Mod will be

Spec(Z0) = SL2(C)∗-graded.
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SL2(C)∗-grading on modules

Proposition

Uξ-Mod =
⊕

χ∈SL2(C)∗ Uξ-Modχ is SL2(C)∗-graded. Each graded piece

has finitely many simple objects.

Proof.

If V1,V2 have Z0-characters χ1, χ2, then V1 ⊗ V2 has Z0-character

χ1χ2: for any z ∈ Z0,

z · (v1 ⊗ v2) = ∆(z) · (v1 ⊗ v2) =
∑

z(1) · v1 ⊗ z(2) · v2

=
∑

χ1(z(1))v1 ⊗ χ2(z(2))v2 = (χ1 ⊗ χ2)(∆(z))v1 ⊗ v2

= (χ1χ2)(z)(v1 ⊗ v2)

31



Role of the Casimir

We think of the matrix for χ as corresponding to

ψ(χ) = χ+(χ−)−1 =

[
χ(KN) −χ(EN)

χ(KNFN) χ(KN)− χ(KNENFN)

]
∈ SL2(C)

• Action of central Casimir Ω given by Nth root of an eigenvalue of

ψ(χ)

• Characters χ̂ : Z → C are in bijection with simple Uξ-modules.

• In particular, for any2 χ : Z0 → C there are N corresponding

Z-characters and N irreps with Z0-character χ

2Unless χ = ±1
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Examples of modules

• Suppose χ = ± id ∈ SL2(C)∗, so χ(KN) = ±1, χ(EN), χ(FN).

• Modules with character ± id are exactly modules for the small

quantum group Uξ/[K±2N − 1,EN ,FN ].

• These include all the usual Uq-modules with integral highest weights

• The usual N-dimensional irrep VN−1 at q = ξ has character

(−1)N+1 id and gives VN,L(q = ξ)
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Generic-highest-weight modules

• Even if EN and FN act by 0

there are N-dimensional

modules with non-integral

highest weight.

• Say

χ =

([
t 0

0 1

]
,

[
1 0

0 t

])

i.e. χ(K ) = tN , χ(EN) =

χ(FN) = 0.

• Here t = ξµ ∈ C \ {0} is like a

multiplicative highest weight

Diagram

Modules Vµ with character χ look

like

• ξµ = t

• tξ−2

...
...

• tξ−2(N−1)

F

F

F E

E

E

34



Non-semisimple invariants

Definition

Invariant coming from Vµ is the Nth ADO invariant (or colored

Alexander polynomial) [ADO92].

• Can apply usual RT construction to the modules Vµ; since E and F

act nilpotently, R converges

• Requires choice of µ ∈ C/2NZ, µ 6= 0, . . . ,N − 2 for each link

component

• Because µ is generic, can think of ADO invariant as a Laurent

polynomial in t = ξµ.

• For N = 2, get the Alexander polynomial (specifically, Conway

potential)

• Value at µ = N − 1 is VN,L(q = ξ), as in volume conjecture
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Non-semisimple TQFT

Theorem (Blanchet, Costantino, Geer, and Patureau-Mirand

[Bla+16])

These invariants extend to a TQFT for each N ≥ 2.

• Defined on category of manifolds with choice of class in

H1(M;C/2NZ) generalizing our choice of µs before

• For N = 2, get a normalized Reidemeister torsion/Alexander

polynomial for manifolds

• Mapping class groups here appear to be more powerful than in WRT

TQFT: some Dehn twists have infinite order, for example
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Modified dimensions

One technical issue:

dimq Vµ = trq(idVµ
) = tr(KN−1|Vµ

) = µ(1 + ξ−2 + · · ·+ ξ−2N+2) = 0

so naive RT gives uniformly zero invariants.

To fix, consider value on 1− 1 tangles instead:

Image F(T ) under functor is a map Vµ → Vµ
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Modified dimensions

• Since F(T ) is an endo of a simple object, we have

F(T ) = 〈F(T )〉 idVµ

• Can think of 〈F(T )〉 as an invariant of closure L of T .

• How do we know that it doesn’t depend on where we cut open the

diagram of L?

• Not hard to show it doesn’t matter if all components of L are colored

by same Vµ. If not:

Theorem

There is a modified dimension function d(Vµ) such that

F(L) = d(Vµ) 〈F(T )〉

is an invariant of L, where T : Vµ → Vµ is a 1− 1 tangle whose closure

is L.
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Computing modified dimensions

Essentially unique choice is

d(Vµ) =
ξµ − ξ−µ

ξNµ − ξ−Nµ

• Akutsu, Deguchi, and Ohtsuki [ADO92] figured out the right d(Vµ)

• General construction involving ratios of open Hopf links given by Geer,

Patureau-Mirand, and Turaev [GPT09].

• Idea: quantum dimensions of all Vµ are 0. If we divide through by

VN−1, ratio gives something nonzero.
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What about non-nilpotent modules?

• Our modules Vµ still had E and F act nilpotently

• For this reason the RT construction basically went through the same

• What happens at non-diagonal characters

χ =

([
κ 0

φ 1

][
1 ε

0 κ

])
?

• We already see that we get a category with nonabelian grading,

because SL2(C)∗ is nonabelian
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Geometric applications

Quantum groups and quantum invariants

Quantum groups at a root of unity

Geometric applications
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The goal

• Previously we had invariants of links with abelian data (cohomology

class).

• Now we will get invariants of links with nonabelian data

• We are working towards holonomy invariants:
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A holonomy invariant

Theorem (Blanchet, Geer, Patureau-Mirand, and Reshetikhin

[Bla+20])

There is a quantum invariant FN,L(ρ) of a link L plus an extended

representation3

ρ : π1(S3 \ K )→ SL2(C).

FN,L(ρ) depends only on the conjugacy class of ρ. When ρ = (−1)N+1 is

trivial, we recover colored Jones VN,L(q = ξ) at a root of unity.

This is a nonabelian deformation of the Jones polynomial at a root of unity.

3More on this later
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Significance

• Since Isom(H3) = PSL2(C), can describe hyperbolic structures on

link complements with reps into SL2(C).

• For each link L, FN,L is a function on the extended character variety

XN(L) of L.

• This is a simple generalization of the usual character variety X(L),

which is the moduli space of SL2(C)-reps of π1(S3 \ L)

• We can therefore put geometry in our quantum invariants

• Should be more powerful than ordinary quantum invariants

44



Application to the volume conjecture

Volume conjecture becomes:

1. Asymptotics of FN,K (ρhyp) at complete hyperbolic structure ρhyp
computes Vol(K )

2. Asymptotics of FN,K (ρhyp) and FN,K ((−1)N+1) at two points of

XN(K ) are related
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Cyclic modules

Consider Z0-character

χ =

([
κ 0

φ 1

][
1 ε

0 κ

])

Since χ(EN), χ(FN) are nonzero, get

a cyclic module Vχ,µ.

Here µ satisfies

−(µN+µ−N) = trψ(χ) = trχ+(χ−)−1

and gives action ξµ+ ξ−1µ−1 of

Casimir.

χ(KN) = κ, χ(EN) = ε

v0 κ1/N

v1 κ1/Nξ−2

...
...

vN−1 κ1/Nξ−2(N−1)

E

E

E

E

E · vk = vk−1

E · v0 = εvN−1
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Braiding for cyclic modules

• Since EN ,FN 6= 0, action of universal R-matrix R on cyclic modules

does not converge.

• Instead consider automorphism

R : Uq ⊗ Uq → Uq ⊗ Uq

given by R(x) = RxR−1.

• R still makes sense at q = ξ.

• Now a braiding is a map intertwining τR:

cχ1,χ2 : Vχ1 ⊗ Vχ2 → Vχ2′ ⊗ Vχ1′

c(x · v ⊗ w) = (τR(x)) · c(v ⊗ w)

• Because R acts nontrivially on Z0 ⊗Z0, characters on left and right

are different!
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Biquandles and characters

Leads to diagrams like:

χ1

χ2

χ3 χ′′1

χ′3

χ′2

χ′1

Notice both labels change at a crossing. What does this mean?

• Usual description (Wirtinger presentation) of knot group from a

diagram has one generator for each arc.

• We instead want a groupoid with two generators for each segment.

• Path above a segment labeled by χ gives χ+, path below gives χ−

• Braiding on χi is a biquandle.
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Braiding on characters

Can compute action of R on characters algebraically. Answer is better

understood geometrically in terms of fundamental groupoid of tangle

diagram:

x+
ix−i

i

The generators associated to

segment i

1

2 1′

2′

x−1 x+
2 x+

2′x
−
1′

There are relations at each crossing,

such as the above
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Recovering Wirtinger

1

2

3

g3

χ+
1

χ+
2

χ+
3

(
χ−3
)−1

g3 = χ+
1 χ

+
2 χ

+
3 (χ−3 )−1(χ+

2 )−1(χ+
1 )−1
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Biquandle factorizations

Theorem ([Bla+20])

This is a generic biquandle factorization of the conjugation quandle of

SL2(C):

1. Every SL2(C)∗-colored tangle has a well-defined rep

π1(complement)→ SL2(C)

2. Not every rep π1(complement→ SL2(C) can be expressed using

SL2(C)∗-coords, but every rep is conjugate to one that can.
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How to define the invariant

Say we have a link L with ρ : π1(S3 \ L)→ SL2(C).

1. Write L as a 1− 1 tangle diagram T .

2. Use factorization rule to color segments of T with χ ∈ SL2(C)∗.

(Might have to conjugate ρ first.)

3. Need extra data of Nth root µ of eigenvalues around each link

component (to determine Casimirs)

4. Apply RT functor to get FN(T ) : Vχ,µ → Vχ,µ.

5. Then

FN,L(ρ) = d(Vχ,µ) 〈FN(T )〉

is our invariant.

52



Braiding for modules

• Still haven’t quite defined the braiding. Condition

c(x · v ⊗ w) = (τR(x)) · c(v ⊗ w)

determines c up to a scalar.

• Determining the scalar is hard! Not even clear how to compute

matrix coeffs of c

• Leads to phase ambiguities in definition of FN

• With Reshetikhin, I am working on fixing these (probably requires

extra structure on links).

• Preliminary computation of matrix coeffs of c is in my thesis

[McP21a, Chapter 3]
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Relation with the torsion

Because of this issue, very hard to actually compute FN for nonabelian ρ.

Currently working on more examples. One thing is known:

Theorem (Me [McP21b])

For any (L, ρ) with well-defined Reidemeister torsion τL(ρ),

F2,L(ρ)F2,L(ρ) = τL(ρ).

This extends the definition of the Alexander polynomial as a quantum

invariant from Ui .

Proof strategy.

There is a Schur-Weyl duality between twisted Burau representation and

action of R on Ui .
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Thank you for watching!
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Another holonomy invariant, with examples

Extending Kashaev and Reshetikhin [KR05], myself, Chen, Morrison, and

Snyder [Che+21] constructed a holonomy invariant. Set ζ = exp(2πi/`)

for ` odd.

Fact

Uζ/ kerχ is a simple bimodule of dimension N2 for any Z-character χ.

Theorem

By assigning a strand of a knot diagram with holonomy χ the module

Uζ/ kerχ, we get a holonomy invariant KRK (ρ) of knots. KRK is a

rational function on a N-fold cover XN(K ) of X(K ).

For technical reasons it is much easier to define the braiding.



KR for the figure-eight knot

K = 41

longitude meridian

X(41) = C[M±1, L±1]/
〈
(L− 1)(L2M4

+L(−M8 + M6 + 2M4 + M2 − 1) + M4)
〉

M±1 are the eigenvalues of the

meridian and L±1 are the eigenvalues

of the longitude.

To get XN(41), replace M with

µN = M



KR for the figure-eight knot

(L− 1) factor is the commutative component and the other is geometric.

We compute that, for N = 3,

KRK (comm) =
(
µ4 + 3µ2 + 5 + 3µ−2 + µ−4

)2
KRK (geom) = 3(µ2 + µ−2)(µ+ 1 + µ−1)3(µ− 1 + µ−1)3

Complete hyperbolic structure of 41 complement corresponds to points

µ = 1, exp(2πi/3), exp(4πi/3) on geometric component.
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